<u>Unterrichtsplanung: Chemie 8. Klasse</u>

	Thema	mögliche Experimente	Kompetenzen Die Schülerinnen und Schüler
1	Wiederholung der wichtigsten Stoffeigenschaften. (z.B. Löslichkeit, pH-Wert, usw.)	SV: Planung eines Experimentes zur Identifikation versch. Stoffe	 unterscheiden Stoffe anhand ausgewählter Eigenschaften (F).
2	 Stoffeigenschaft: "Dichte" Die Dichte als eine weitere Stoffeigenschaft nutzen. Formel zur Berechnung der Dichte einführen. Dichte unterschiedlicher Metallstücke vergleichen. Proportionaler Zusammenhang zwischen Volumen und Masse beschreiben. (Volumen/Masse-Diagramm erstellen) 	Mögliche Unterrichtseinstiege: • "Goldherstellung" • Vergleich von Cola und Cola light SV: Bestimmung der Dichte von unterschiedlichen Metallstücken (z.B Aluminium)	 stellen Bezüge zur Mathematik her (B) stellen gewonnene Daten in Diagrammen dar (E).
Zusatz	Das Prinzip des Archimedes (Wie kann man das Volumen eines unregelmäßig geformten Gegenstands bestimmen?) Schwimmen und Sinken Vergleich der Dichte unterschiedlicher Stoffe mit		
3	der Fähigkeit im Wasser zu schwimmen. Chemische Reaktionen Vergleich der Eigenschaften der Ausgangsstoffe mit denen der Reaktionsprodukte	LV: Reaktion von Kupfer und Schwefel Verbrennung von Kerzenwachs, Reaktion von Zink mit Iod usw.	 Beschreiben, dass nach einer chemischen Reaktion die Ausgangsstoffe nicht mehr vorliegen und gleichzeitig immer neue Stoffe entstehen (F). Formulieren Vorstellungen zu Edukten und Produkten
4	 Energetik verschiedenen Energieformen vergleichen Energiediagramm erstellen Aktivierungsenergie exotherme bzw. endotherme Reaktionen 	LV: Reaktion von Eisen und Schwefel Reaktion von Zink und Schwefel Verbrennung von Magnesium SV: Erhitzen von Kupfersulfat-Hydrat und Zugabe von Wasser zu Kupfersulfat	 beschreiben, dass chemische Reaktionen immer mit einem Energieumsatz verbunden sind (F). beschreiben, dass chemische Reaktionen grundsätzlich umkehrbar sind (F). beschreiben, dass sich Stoffe in ihrem

5	Katalysator	Verbrennung eines Zuckerwürfels, Zersetzung von Wasserstoffperoxid	 Energiegehalt unterscheiden (F). beschreiben, dass Systeme bei chemischen Reaktionen Energie mit der Umgebung z.B. in Form von Wärme, austauschen und dadurch ihren Energiegehalt verändern (F). erstellen Energiediagramme (E).
6	 Nachweisreaktionen für Gase Glimmspanprobe Knallgasprobe Kalkwassernachweis Nachweis von Wasser mit Kupfersulfat 	SV oder LV : Durchführung der verschiedenen Nachweisreaktionen	 erklären das Vorhandensein von Stoffen anhand ihrer Kenntnisse über Nachweisreaktionen. (F) wenden Nachweisreaktionen an (E).
7	Gesetz von der Erhaltung der Masse	SV: Reaktion von Kupfer mit Schwefel Reaktion von Zink mit Salzsäure (→ Nachweis des entstandenen Gases)	 entwickeln das Gesetz von der Erhaltung der Masse (F). erkennen die Allgemeingültigkeit von Gesetzen (E).
8	 Chemische Reaktionen im Teilchenmodell Begriffsklärung: Element, Verbindung, Analyse, Synthese Daltons Atommodell Bausteinkonzept 		 beschreiben den Bau von Stoffen mit einfachen Atommodellen (F) unterscheiden Elemente und Verbindungen (F) beschreiben, dass bei chemischen Reaktionen die Atome erhalten bleiben und neue Teilchenverbände gebildet werden (F). wenden ein einfaches Atommodell an (E). gehen kritisch mit Modellen um (E). deuten chemische Reaktionen mit dem Atommodell (E).
9	Einstieg: Oxidation	SV: Erhitzen eines Kupferbriefs Rosten eines Eisennagels LV: Verbrennung von Eisenwolle Kohlenstoffverbrennung Verbrennung von Magnesium	

10	SauerstoffübertragungsreaktionenReaktivität der Metalle	SV Reduktion von Kupferoxid mit Kohlenstoff	Erkennen, dass chemische Reaktionen in der Alltagswelt stattfinden (B).
	Redoxreihe der Metalle	evtl. Hochofen, Thermitverfahren	 Erkennen die Bedeutung chemischer Reaktionen für Natur und Technik (B).
11	 Chemische Grundgesetze Gesetz der Erhaltung der Masse Gesetz der konstanten Proportionen Gesetz der multiplen Proportionen Interpretation der chemischen Grundgesetze auf Basis des Teilchenmodells/Bausteinekonzepts 	 Stoffkreislauf: Kohlenstoff Verbrennung von Schwefel mit Kupfer Reduktion von Kupfer(I)oxid und Kupfer(II)oxid Kontext für die konstanten Proportionen z.B. Silberstiftzeichnungen (Viel hilft viel?) 	Massen von Stoffportionen und errechnen für einige Beispiele notwendige Massenverhältnisse für vollständigen Umsatz
12	 Atommodell nach Dalton Einführung der Atommasse mit Einheit u Vorgabe H = 1u möglich, weitere Beziehung zwischen H und O-Atom o. Ä. Elementmassen 		 Erarbeiten die Aussage des Daltonschenatommodells und wenden sie an kennen die Berechnung von der Teilchenmasse in unit und wende sie an
13	 Chemische Symbole Wichtige Elementsymbole (es werden schon viele ES von Nebengruppenelementen benötigt) Wertigkeit als Hilfsmittel (Händemodell) zur Bestimmung der Verhältnisformel 	Internationale Kommissionen	 kennen Symbole für wichtige Elemente (insbesondere der Hauptgruppe) und verwenden sie bei Reaktionsgleichungen an beschreiben, veranschaulichen oder erklären chemische Sachverhalte unter Verwendung der Fachsprache und mit Hilfe geeigneter Modelle und Darstellungen
14	 Erstellen von Reaktionsgleichungen Verhältnis- / Elementarformel und Aufstellung von Reaktionsgleichungen 		 unterscheiden auf der Basis des Atommodells Elemente und Verbindungen